
#### **THERMODYNAMICS** (BAV 303)



**PIAT** 

WILEY

## **OBJECTIVES**

- Basic ideas of understanding of concepts & First Law of Thermodynamics
- Understand the concepts of second Law & Entropy
- Definition & Laws pertaining to Ideals Gas Properties and process
- Knowledge of Gas Power Cycles
- Evaluate heat & Work Transfer for Ideal gas process





- Basic Ideas & Definitions
- Laws of Thermodynamics
- Ideal Gas Properties and Process
- Gas Power Cycle



## **BASIC IDEAS & DEFINITIONS**

- Thermodynamic System
  - Types of systems
  - State of Systems
  - Properties of Systems
  - Classification of properties
- Thermodynamic Process & Cycle
- Work Transfer and Heat Transfer



# **Definition of Thermodynamics**

- Thermodynamics is the science of energy transfer and its effect on the physical properties of substances.
- Greek Words *therme* (heat) + *dynamics* (power)
- It incudes all aspects of energy and energy transformation, including Heat, Work, power generation, refrigeration & relationships among the properties of matter.

## ROLE OF THERMODYNAMICS

- In Engineering it plays important Role in the Design of
  - Automobile Engines
  - Compressors and Turbines
  - Refrigerators
  - Rockets
  - Jet Engines
  - Solar Collectors
  - Conventional and Nuclear Power plants

PIAT

- Energy Efficient Home



- Substance consists of a large number of particles molecules
- Properties depend on behavior of particles e. g. pressure of a gas in a container
  - Classical Approach
  - Statistical Approach

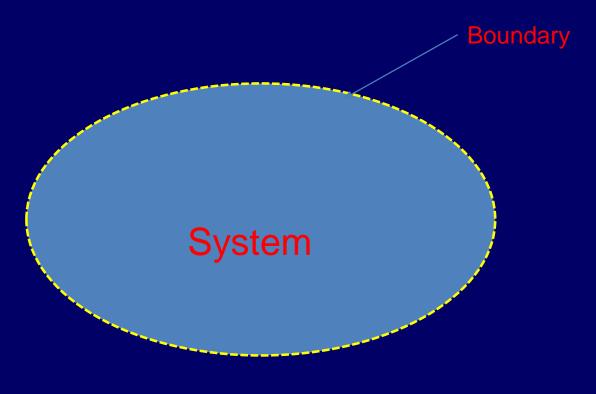


# **Classical Thermodynamics**

- It does not require a knowledge of the behavior of individual particles. Structure of the matter is not considered
- It concern with effects of action of many molecules, only a few variables are needed to describe the state of the system
- Values of these variables can be measured. Effects can be perceived by human senses e. g pressure
- Independent of assumptions regarding nature of matter
- It is macroscopic approach to study of Thermodynamics
- Direct and Easy way to solve problem

# **Statistical Thermodynamics**

- Approach based on the average behavior of large group of individual particles
- It concern with effects of action of each molecule
- Here nature of matter is important, knowledge of the structure of the matter is necessary
- A large number of variables are needed to describe the state of the system. Values of the variables cannot be measured easily.
- It is microscopic approach to study Thermodynamics
- All results of macroscopic Thermodynamics can be derived from microscopic studies


PIAT

# **Thermodynamics Study**

- Approach based on understanding Thermodynamic System
  - Consider Certain region in space or
  - Consider quantity of matter

- Imagine system with its surroundings and Boundaries





surroundings



# **Thermodynamic System**

- It is defined as a quantity of matter or a region in space upon which attention is concentrated in the analysis of a problem
- Everything external to the system is surroundings or the environment
- The real or imaginary surface that separates the system from its surroundings is called the Boundary
  - Boundary can be fixed or movable
  - Boundary is Shared by both the system & surroundings
  - Boundary has zero thickness

- It can neither contain any mass nor occupy any volume in space

# **JAI HIND**

PIAT